On General Perturbations of Symmetric Markov Processes
نویسندگان
چکیده
Let X be a symmetric right process, and let Z = {Zt, t ≥ 0} be a multiplicative functional of X that is the product of a Girsanov transform, a Girsanov transform under time-reversal and a continuous Feynman-Kac transform. In this paper we derive necessary and sufficient conditions for the strong L-continuity of the semigroup {Tt, t ≥ 0} given by Ttf(x) = Ex [Ztf(Xt)], expressed in terms of the quadratic form obtained by perturbing the Dirichlet form of X in the appropriate way. The transformations induced by such Z include all those treated previously in the literature, such as Girsanov transforms, continuous and discontinuous Feynman-Kac transforms, and generalized Feynman-Kac transforms.
منابع مشابه
ON THE GENERALIZATION OF N-PLE MARKOV PROCESSES
The notion of N-ple Markov process is defined in a quite general framework and it is shown that N-ple Markov processes-arel inear combinationso f some martingales
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملStability of Dirichlet Heat Kernel Estimates for Non-local Operators under Feynman-kac Perturbation
Abstract. In this paper we show that Dirichlet heat kernel estimates for a class of (not necessarily symmetric) Markov processes are stable under nonlocal Feynman-Kac perturbations. This class of processes includes, among others, (reflected) symmetric stable-like processes in closed d-sets in Rd, killed symmetric stable processes, censored stable processes in C1,1 open sets, as well as stable p...
متن کاملPerturbations of the Symmetric Exclusion Process
One of the fundamental issues concerning particle systems is classifying the invariant measures I and giving properties of those measures for different processes. For the exclusion process with symmetric kernel p(x, y) = p(y, x), I has been completely studied. This paper gives results concerning I for exclusion processes where p(x, y) = p(y, x) except for finitely many x, y ∈ S and p(x, y) corr...
متن کاملAbsolute Continuity of Symmetric Markov Processes
We study Girsanov’s theorem in the context of symmetric Markov processes, extending earlier work of Fukushima-Takeda and Fitzsimmons on Girsanov transformations of “gradient type”. We investigate the most general Girsanov transformation leading to another symmetric Markov process. This investigation requires an extension of the forward-backward martingale method of Lyons-Zheng, to cover the cas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008